## ELYSIUM INDUSTRIES

MSR STATUS IN THE US AND ELYSIUM INDUSTRIES POTENTIAL MITIGATION OF JAPAN'S SPENT NUCLEAR FUEL & PLUTONIUM CHALLENGES

June 2018

Dr. Youssef Ballout, President Ed Pheil, Chief Technology Officer

#### ABOUT THE MOLTEN SALT REACTOR (MSR)

MSR STATUS IN THE UNITED STATES

### GENESIS OF MOLTEN SALT REACTOR TECHNOLOGY

- First MSR design in the 1950's was for an AIRCRAFT that can fly indefinitely-cancelled later
- MSR Experiment at Oak Ridge National Lab <u>successfully operated</u> for about 4 years. Cancelled by president Nixon
- MSR technology went dormant until the dawn of the 21st century



### DATA AND INTEGRATED RESEARCH PROJECT Solid Fuel MSR - FHR



### FOLLOWING FHR IRP'S

- US companies developing commercial designs started to appear
  - FHR spun off into Kairos Power
- FHR/Kairos were solid fuel NOT liquid fueled MSR's
  - Summer 2015 Elysium discussed how MSR's could improve economics, proliferation safety and concerns
  - DOE started to organize monthly MSR meetings
- Fall 2015 DOE agreed to release additional MSRE documents

### DEPARTMENT OF ENERGY (DOE) MSR SUPPORT



### DOE GATEWAY FOR ACCELERATED INNOVATION IN NUCLEAR (GAIN)



#### 2016

- Terrestrial Energy / Argonne Nat'l Lab (ANL)
- Verification of Molten-Salt Properties at High Temperatures
- TransatomicPower / Oak Ridge National Lab (ORNL)
- Optimization and Assessment of the Neutronics and Fuel Cycle Performance of the TransatomicPower Molten Salt Reactor Design

#### 2017

- Elysium Industries / Idaho Nat'l Lab (INL) / ANL Synthesis of Molten Chloride Salt Fast Reactor Fuel Salt from Spent Nuclear Fuel
- Kairos Power / ANL / INL- Nuclear Energy Advanced Modeling and Simulation Thermal-Fluids Test Stand for Fluoride-Salt—Cooled, High-Temperature Reactor Development
- Muons Inc / ORNL Conversion of Light Water Reactor Spent Nuclear Fuel to Fluoride Salt Fuel
- Terrestrial Energy USA / ANL IMSR Fuel Salt Property Confirmation: Thermal Conductivity and Viscosity
- TransatomicPower / ANL Fuel Salt Characterization

#### 2018

\_

- Terrestrial Energy USA / ORNL \$500K Advancement of Instrumentation to Monitor IMSR Core Temperatures and Power Level
- UrbixResources / ORNL \$320K Nuclear Grade Graphite Powder Feedstock Development
- ThorCon/ ANL \$400K Electroanalytical Sensors for Liquid Fueled Fluoride Molten Salt Reactor

### DOE US INDUSTRY OPPORTUNITY FOR ADVANCED NUCLEAR TECHNOLOGY AWARDS (2018)

Advanced Nuclear Technology - Types

• First of a Kind

E

- Advanced Reactor Development Projects
- Regulatory Assistance Grants

Advanced Reactor Development Projects

• Elysium Industries \$3.2M - Modeling and Optimization of Flow and Heat Transfer in Reactor Components for Molten Chloride Salt Fast Reactor Application

DOE ARPA-E Nuclear MEITNER Awards

- Yellowstone Energy \$2.6M
  - Reactor Technology to enhance passive safety and reduce costs for its molten salt reactor
  - Vaporizing Control Rod material to absorb neutrons
- Terrestrial Energy USA \$3.15M
  - MSR pump development, including magnetic bearings for sealing
- University of Illinois for Transatomic Power– Urbana Champaign \$0.775M
  - Fuel processing system development for MSRs



### U.S. COMPANIES FOCUSED ON MSR

Several MSR Companies have emerged with MSR designs across the US and Europe.

A list of US MSR companies shows that:

- 1. Most are STARTUP companies with funding from private investors
- 2. Are developing reactors that have FAST or THERMAL spectrum variants
- 3. Salts are either FLUORIDE or CHLORIDE based
- 4. Materials under consideration varies from code qualified metals to materials under some level of development, including Silicon Carbide
- 5. Hot temperature varies for most varies from about 600°C to about 700°C
- 6. A Fast are suitable to burn SNF, Pu, & Minor Actinides

### TABLE 1A: SOLID FUEL MOLTEN SALT COOLED REACTORS (THERMAL)

| Reactor Name                                                                                         | Fuel/Salt/Moderator                                     | Country | Developer    | Power (MWth) |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------|--------------|--------------|
| AHTR<br>Advanced High<br>Temperature Reactor<br>SmAHTR<br>Small Advanced High<br>Temperature Reactor | LEU<br>TRISO in blocks/plates<br>7LiF-2BeF2<br>Graphite | USA     | ORNL         | 3400<br>125  |
| PB-FHR<br>Pebble Bed – Fluoride<br>Cooled High<br>Temperature Reactor                                | LEU<br>TRISO in Pebbles<br>7LiF-2BeF2<br>Graphite       | USA     | Kairos Power | 240          |

### TABLE 2A: USA THERMAL NEUTRON SPECTRUM LIQUID FUEL MOLTEN SALT REACTOR

| Reactor Name                              | Fuel/Salt/Moderator                   | Country       | Developer                | Power (MWth) |
|-------------------------------------------|---------------------------------------|---------------|--------------------------|--------------|
| Transatomic MSR (ZrH 1.6 moderator)       | LiF-UF4, LEU<br>ZrH1.6                | USA           | Transatomic Power        | 1250         |
| iMSR - Integral Molten Salt<br>Reactor    | LEU<br>Fluorides<br>Graphite          | Canada<br>USA | Terrestrial Energy       | 400          |
| Thorcon Reactor                           | LEU, Th<br>NaF-BeF2<br>Graphite       | USA team      | Thorcon<br>International | 557          |
| LFTR - Liquid Fluoride Thorium<br>Reactor | Th-233U<br>7LiF-2BeF2<br>Graphite     | USA           | Flibe Energy             | 600          |
| GEM*STAR                                  | U-Pu-SNF-MA<br>7LiF-2BeF2<br>Graphite | USA           | Muons, Inc               | 500          |
| Process Heat Reactor                      | UF4<br>NaF-BeF2<br>Be                 | USA           | Thorenco                 | 40           |

### TABLE 3A: USA FAST/EPITHERMAL NEUTRON SPECTRUM LIQUID FUEL MOLTEN SALT REACTOR

| Reactor Name                                     | Fuel/Salt/Moderator                                   | Country       | Developer                                   | Power (MWth) |
|--------------------------------------------------|-------------------------------------------------------|---------------|---------------------------------------------|--------------|
| MCSFR - Molten Chloride Salt<br>Fast Reactor     | SNF & Pu (Preferred)<br>Or HLEU<br>NaCl-UClx-OtherClx | USA<br>Canada | Elysium Industries                          | 10 - 4000    |
| MSFR - Molten Salt Fast Reactor                  | HLEU w/ DU makeup<br>Chloride Salt                    | USA           | TerraPower                                  | 2500         |
| SCIFR - Sodium Chloride<br>Integral Fast Reactor | TRU<br>NaCl-ThCl4-TRU-Cl3                             | USA           | Flibe Energy                                | 600          |
| SAFR - Simple Advanced Fast<br>Reactor           | Static fuel in NaF-BeF2<br>Hg Coolant                 | USA           | Schattke Advanced<br>Nuclear<br>Engineering | 50           |

### U.S. GOVERNMENT POSITION ON MSR

- MSRE Documents release in 2007
- Several US private companies were formed to work on MSR
- 2015 DOE started supporting Liquid fueled MSRs
- DOE is now funding MSR work at US National Labs



### THE ELYSIUM REACTOR

Modular Reactor 8 Salt to Salt Heat Exchangers 4 Steam Super-Heaters



### ABOUT THE TECHNOLOGY

The Molten Chloride Salt Fast Reactor (MCSFR)

| Name                    | Molten Chloride Salt Fast<br>Reactor (MCSFR)              |
|-------------------------|-----------------------------------------------------------|
| Neutron Spectrum        | Fast Spectrum Neutron Flux                                |
| Fuel                    | Liquid - <b>SNF, RGPu,WGPu</b> ,<br>DU, LEU, Unat, DU, Th |
| Salt Form               | Chloride based Fuel Salt                                  |
| Thermal Capacity        | 10* - 4000 MWth (Flexible)                                |
| Electrical Capacity     | 25 - 2000 MWe (Flexible)                                  |
| Core Outlet Temperature | 610 - 750 - 1000 C                                        |
| Core Inlet Temperature  | 510 - 550 - 600 C                                         |
| Delta Temperature       | 100 - 200 - 400 C                                         |
| Moderator               | None                                                      |
| Operating Pressure      | Low                                                       |

\* 10MWth Prototype in US for fast Regulatory license, then uprated to higher power





### ABOUT THE TECHNOLOGY

#### Safety

Low Operating Pressure

- Reduced complexity, size and cost of highly pressurized components
- Mitigates external threats due to its design to withstand aircraft impact, below grade construction, and restricted plant access

#### Drain Tanks

- A critical and simple safety feature for molten salt reactors that does not require operator intervention
  If the chloride fuel salt overheats or the plant loses
- power, the freeze plug melts and the fuel drains to a passively cooled criticality safe storage tanks

#### Vision

\_

- Large surface area tanks to air
- Much higher heat transfer
  - $\gg$ @ 600+C (to 1000C) vs <300C for water, up
- Heat pipes to air Heat exchanger
- Alternatives to freeze valve
  - ≻Pumped draining via flow valves



### FLEXIBLE POWER

Ε



#### Power Rating

### FLEXIBLE ENERGY USES

Electricity @ 30x LWR fuel utilization - Electric Vehicle Power Burn up Pu & SNF Waste

- Reduce storage costs and proliferation concerns

Process Heat

- Desalination
- District heating and absorption cooling
- Concrete & steel preheating
  - Thermal booster or electricity for higher temperatures
- Hydrogen production (650 to 950 c)
- Synthetic fuel

F

• Fertilizer manufacturing



### FLEXIBLE FUEL

Preferred Fuel Cycle - Pu & SNF Also, HLEU/LEU, NU, DU, Th

#### Pu & SNF

WGPu 8 tonnes/reactor startup
RGPu>10 tonnes/reactor startup

46.9 tonnes within and outside of Japan (as of end of 2016)
9.8 tonnes held domestically

SNF ~68 tons, less if using RGPu

Japan Atomic Power Company: 6,659 casks
Japan Nuclear Fuel Company: 3,393 tonnes (PWR)

& BWR)

•TEPCO: 49,940 casks

•Add in Fuel from SNF -

3 kg/day 0.4 tonne/year/GWth 1 tonne/year/GWe

#### Blanket:

E

Generate New Reactor Startup Fuel Faster
 Shorter doubling time
 > 1 year periodic RG Pu removal



### FISSION PRODUCT REMOVAL, NOT FUEL

Simple On-line Soluble Fission Product Removal

#### Fuel Chemistry Cleanup/Conditioning

Gasses - Fuel salt is degassed every 30 minutes •Kr, Xe, Rn

Particulates - Noble metals filtered out every 4 hours >Zr,Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Hf, Hg, Tl, Pb, Bi, Te, Se, Po, I, At

#### **Soluble Fission Products**

Lanthanides extracted at a processing rate of ~40 litres/day La, Ce, Pr, Nd, Pm, Sm,Gd, Dy, Ho, Er, Tm, Yb, Y (lanthanides?)

Leveraging years of development from Integral Fast Reactor program and conferences on chloride salt pyro-processing methods

Japan has Skills in Chloride Salt Pyro-Processing

### FISSION PRODUCT REMOVAL, NOT FUEL

Long Term Burn, Partial Clean Up

Gasses - Same Particulates - Same

Eliminate On-Line Solubles Purification

•Operate for 50-100 years

•Slightly positive Breeding Ratio exactly offsets Fission Product Poison buildup

•Ship to Central Facility from all MCSFRs

•Remove 95% of Fission Products

•Leave 5% FP for proliferation protection

•Split fuel to supply two reactors

•Back fill with converted SNF & carrier salt

•Why?

•Lower plant capital, operating cost, faster build

•Lower per plant risk

•Specialized experience at central facility lowers risk

•Much lower overall cost

•Central Facility near plutonium and SNF storage facilities for access and combined new fuel and reused fuel

### ELYSIUM FUEL PRODUCTION PROCESS



No Separation of Proliferation Sensitive Materials:

- U/Pu/MA/FP's always kept together
- Main safeguards and proliferation concerns are eliminated
- Short lived Fission Product Waste (100-300 yr)
- Zirconium recycling
- Medical, etc. Isotope recovery

No Aqueous Processing:

- Decay heat is less of a factor
- Earlier processing possible
- Fewer criticality concerns
- Higher throughput
- Single chemical process vs 100's (100x)
- Lower cost

### How Elysium can assist Japan with its SNF, Pu & radioactive waste challenges

The Elysium MCSFR can deliver many benefits to Japan including:

•Begin eliminating long-lived actinides in radioactive waste <u>before the completion</u> of Japan's Geological Disposal Program in the mid 2030s

•Mitigate the difficult discussions and negotiations with local governments and the public over siting a permanent long term storage disposal facility in Japan.

•Efficient, simpler and less capital intensive than traditional nuclear reactors and eliminates the need for SNF reprocessing and long term storage disposal facilities.

•A simple method to consume/reduce excess Pu (47 tonnes) 10 t/Reactor for startup only

•Each year Consumes 1 t SNF/GWe reactor, 30x as much energy as using MOX

•Very low proliferation risk and <u>will be aligned</u> <u>with Japan's commitment</u> to non-proliferation and peaceful use of nuclear energy.

### How Japan can support MSR Development in the United States

- Molten salt pumps, valves, piping, instrumentations and controls, heat exchangers, structural materials.
- Molten salt fabrication
- Materials testing (chemistry loop, high temperature, corrosion, erosion, etc.)
- Additive manufacturing
- Manufacturing controls
- Remote robotic maintenance processes and equipment development
- Irradiation test programs at JOYO (or other facilities) for structural alloys and fuel salt in fast neutron test reactor
- Construction of components and pressure vessels
- Modular construction facilities
- Power plant design and analysis
- Materials and project management
- Supply chain management
- Radioactive waste reserves

### MOLTEN SALT IRRADIATION IN REACTOR

Elysium and Thorium Tech Solution (TTS) are investigating cooperation to simulate Fast Neutron High flux conditions. TTS designed an irradiation device with OECD Halden Reactor Project/IFE in Norway. A new design is underway for Kazakhstan.



Irradiation Capsule was designed by TTS for Kazakhstan reactor

Irradiation system in reactor

### STEPWISE TESTS FROM THERMAL TO FAST

We foresee stepwise testing with the best available nuclear facilities from thermal reactors to fast reactors based on international friendship.

TTS and INP of Kazakhstan signed MOU to use WWR-K reactor to burn Pu and MA using liquid fuel. Testing of liquid fuel may initiate in Kazakhstan then come to Japan

#### Kazakhstan



WWR-K rector INP

Е

#### JAPAN



JOYO fast-neutron reactor JAEA

### WHY IS JAPAN AN IMPORTANT STAKEHOLDER?

- Extensive experience in construction and operation of nuclear power plants for more than half a century
- Long history of world class advanced reactor technology development efforts
- Robust supply chain

E

- Proven strong project management and performance
- High interest in safe and sustainable operation of nuclear reactors
- Highly competent workforce and nuclear technology development infrastructure, (especially SNF Reprocessing, Pyro-processing, MSR, & Fast reactor)
- Commitment to the use of nuclear technology for peaceful purposes

### CONCLUSION

The US government is very serious about supporting MSR technology

The Elysium MCSFR **closes the fuel cycle** 

Low cost, no separations, improved proliferation safety

Extend existing Uranium energy by 30x vs MOX

Passive safety and operation

Flexible Fuel – SNF, Pu, LEU, DU, NU, Th Flexible Power - 25 to 2000 Mwe Flexible Uses – Electricity, SNF/Pu consumption, Many process heat uses



# THANK YOU FOR YOUR KIND ATTENTION ELYSIUM INDUSTRIES

www.elysiumIndustries.com

### APPENDIX

### TABLE 1B: INTERNATIONAL SOLID FUEL MOLTEN SALT COOLED REACTORS

| Reactor Name                                            | Fuel/Salt/Moderator                               | Country | Developer                       | Power (MWth) |
|---------------------------------------------------------|---------------------------------------------------|---------|---------------------------------|--------------|
| TMSR-SF2 Thorium<br>Molten Salt Reactor -<br>Solid Fuel | LEU<br>TRISO in Pebbles<br>7LiF-2BeF2<br>Graphite | China   | SINAP, CAS                      | 400          |
| IHTR - Indian High<br>Temperature Reactor               | Th, U<br>Pebbles<br>Graphite                      | India   | Bhaba Atomic<br>Research Center | 600          |

### TABLE 2B: INTERNATIONAL THERMAL NEUTRON SPECTRUM LIQUID FUEL MOLTEN SALT REACTOR

| Reactor Name                                                                                                      | Fuel/Salt/Moderator                                          | Country | Developer               | Power (MWth) |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------|-------------------------|--------------|
| TMSR-LF2<br>ThoriumMolten Salt Reactor –<br>Liquid Fuel                                                           | Th-LEU<br>7LiF-2BeF2<br>Graphite                             | China   | SINAP, CAS              | 400          |
| FUJI-U3                                                                                                           | Th-233U<br>7LiF-2BeF2<br>Graphite                            | Japan   |                         | 450          |
| AMBIDEXTER<br>Advanced Molten-salt<br>Break-even<br>Inherently-Safe-Dual-mission<br>Experimental and Test Reactor | 233UF4-ThF4<br>7LiF-2BeF2                                    | Korea   | Ajou University         | 250          |
| Copenhagen Atomics Waste<br>Burner                                                                                | Th, SNF<br>7LiF-ThF4<br>D2O                                  | Denmark | Copenhagen Atomics      | 50           |
| CUBE-100                                                                                                          | Any fuel<br>Fluorides                                        | Denmark | Seaborg<br>Technologies | 250          |
| SSR-U<br>Stable Salt Thermal Reactor<br>(Fuel tubes)                                                              | Static LEU fluoride in tubes<br>ZrF3 or ThF4 coolant/breeder | UK      | Moltex Energy           | 300-2500     |

### TABLE 3B: INTERNATIONAL FAST/EPITHERMAL NEUTRON SPECTRUM LIQUID FUEL MOLTEN SALT REACTOR

| Reactor Name                                   | Fuel/Salt/Moderator                                     | Country | Developer     | Power (MWth) |
|------------------------------------------------|---------------------------------------------------------|---------|---------------|--------------|
| MSFR<br>Molten Salt Fast Reactor               | Th-233U<br>7LiF                                         | EU      | EVOL SAMOFAR  | 3000         |
| U-Pu FMSR<br>U-Pu Fast Molten Salt<br>Reactor  | U-Pu<br>7LiF-NaF-KF                                     | Russia  |               | 3200         |
| FMSR-burner                                    | PuF3-AmF3<br>LiF-NaF-KF                                 | Russia  |               | 1650         |
| MOSART                                         | SNF+0.1MA/TRU<br>LiF-NaF-BeF2                           | Russia  |               | 2400         |
| SSR-W<br>Stable Salt Thermal<br>Reactor        | Low purity PuCl3<br>Static in tubes<br>Fluoride coolant | UK      | Moltex Energy | 750-2500     |
| IMSBR<br>Indian Molten Salt Breeder<br>Reactor | LiF-ThF4-UF4+                                           | India   | BARC          | 1900         |

### TECHNICAL TOPICS

#### SOLID VS LIQUID FUELS

| Solid Fuels                                      | Liquid Fuels                                         |
|--------------------------------------------------|------------------------------------------------------|
| Has large industrial infrastructure and database | Easier to make and no tight manufacturing tolerances |
| Traps fission products                           | Fission products can be removed on-line              |
| Needs cladding barrier replacement               | No cladding damage to limit lifetime                 |
| Sustains damage                                  | Fuel is not damaged, self repairing                  |
|                                                  | Already molten                                       |
|                                                  | Easier/Cheaper to process to close the fuel cycle    |

### TECHNICAL TOPICS

#### Technical Risk Mitigation

| Risk                                              | H,M,L | Mitigation                                                                                                                                                     |
|---------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use of Compact HXs                                | Н     | Discussions with vendors, possibly increase number of loops to reduced HX size, or insert multiple modules in each shell                                       |
| Reliability of Salt Purification<br>Systems       | Н     | Testing of systems with surrogate salts, continued use of consultants with extensive experience in chloride chemistry                                          |
| Erosion limits Flow Velocities, Poor<br>Economics | М     | Small scale loop testing at high flow rates, use carburizing or nitriding to increase surface hardness                                                         |
| Fuel Salt Production                              | М     | Investigate multiple processing routes, use proven Cl2 - H2 method,<br>engage existing fuel vendors early - Accepted for DOE Grant for Fuel<br>Salt Production |
| Supply Chain for 15-20% Enriched<br>Uranium       | М     | Down blend HEU for demonstration reactor, discussions with BWXT, Urenco, collaborate with other end users                                                      |
| Maintenance                                       | М     | Loop design to allow access to components, bolted flanges for loop<br>removal, flush salt to reduce activity, design for remote and robotic<br>maintenance     |

### SUMMARY CALCULATIONS

#### Costs per KW and MWh

Ε

|                                    | Costs per kW and MWh |                   |                   |
|------------------------------------|----------------------|-------------------|-------------------|
|                                    | PWR                  | Generic MSR       | Elysium           |
| Capitalized Costs                  |                      |                   |                   |
| Capitalized pre-construction costs | \$131 /kW            | \$131 /kW         | \$131 /kW         |
| Capitalized direct costs           | \$2,218 /kW          | \$1,888 /kW       | \$1,862 /kW       |
| Capitalized indirect costs         | \$2,470 /kW          | \$2,103 /kW       | \$419 /kW         |
| Capitalized owner's costs          | \$703 /kW            | \$599 /kW         | \$599 /kW         |
| Capitalized supplementary costs    | \$78 /kW             | \$75 /kW          | \$60 /kW          |
| Capitalized financial costs        | <u>\$1,155 /kW</u>   | <u>\$997 /kW</u>  | <u>\$669 /kW</u>  |
| Capitalized Costs Total            | \$6,755 /kW          | \$5,794 /kW       | \$3,740 /kW       |
| Per MWh                            | \$70 /MWh            | \$60 /MWh         | \$39 /MWh         |
|                                    |                      |                   |                   |
| Annualized Costs                   |                      |                   |                   |
| Annualized O&M costs               | \$20 /MWh            | \$16 /MWh         | \$16 /MWh         |
| Annualized fuel costs              | \$7 /MWh             | \$3 /MWh          | \$3 /MWh          |
| Annualized financial costs         | <u>\$0.3 /MWh</u>    | <u>\$0.3 /MWh</u> | <u>\$0.3 /MWh</u> |
| Annualized Costs Total             | \$28 /MWh            | \$19 /MWh         | \$19 /MWh         |
|                                    |                      |                   |                   |
| Levelized Cost of Electricity      | \$97 /MWh            | \$79 /MWh         | \$58 /MWh         |

### SUMMARY CALCULATIONS

Е

COST COMPARISONS WITH PWR AND GENERIC ADVANCED REACTOR

|                         | PWR         | Generic MSR | Elysium      |
|-------------------------|-------------|-------------|--------------|
| Capitalized Costs Total | \$6,755 /kW | \$5,794 /kW | \$3,740 /kW  |
| Relative to PWR         |             | -\$961 /kW  | -\$3,015 /kW |
| Relative to Generic MSR |             |             | -\$2,054 /kW |

| Annualized Costs Total  | \$28 /MWh | \$19 /MWh | \$19 /MWh |
|-------------------------|-----------|-----------|-----------|
| Relative to PWR         |           | -\$9 /MWh | -\$9 /MWh |
| Relative to Generic MSR |           |           | \$0 /MWh  |

| Levelized Cost of Electricity | \$97 /MWh | \$79 /MWh  | \$58 /MWh  |
|-------------------------------|-----------|------------|------------|
| Relative to PWR               |           | -\$18 /MWh | -\$40 /MWh |
| Relative to Generic MSR       |           |            | -\$21 /MWh |